273 research outputs found

    Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention

    Get PDF
    Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain \u3e99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    Common variants in LEPR, IL6, AMD1, and NAMPT do not associate with risk of juvenile and childhood obesity in Danes:a case-control study

    Get PDF
    BACKGROUND: Childhood obesity is a highly heritable disorder, for which the underlying genetic architecture is largely unknown. Four common variants involved in inflammatory-adipokine triggering (IL6 rs2069845, LEPR rs1137100, NAMPT rs3801266, and AMD1 rs2796749) have recently been associated with obesity and related traits in Indian children. The current study aimed to examine the effect of these variants on risk of childhood/juvenile onset obesity and on obesity-related quantitative traits in two Danish cohorts. METHODS: Genotype information was obtained for 1461 young Caucasian men from the Genetics of Overweight Young Adults (GOYA) study (overweight/obese: 739 and normal weight: 722) and the Danish Childhood Obesity Biobank (TDCOB; overweight/obese: 1022 and normal weight: 650). Overweight/obesity was defined as having a body mass index (BMI) ≥25 kg/m(2); among children and youths, this cut-off was defined using age and sex-specific cut-offs corresponding to an adult body mass index ≥25 kg/m(2). Risk of obesity was assessed using a logistic regression model whereas obesity-related quantitative measures were analyzed using a general linear model (based on z-scores) stratifying on the case status and adjusting for age and gender. Meta-analyses were performed using the fixed effects model. RESULTS: No statistically significant association with childhood/juvenile obesity was found for any of the four gene variants among the individual or combined analyses (rs2069845 OR: 0.94 CI: 0.85–1.04; rs1137100 OR: 1.01 CI: 0.90–1.14; rs3801266: 0.96 CI: 0.84–1.10; rs2796749 OR: 1.02 CI: 0.90–1.15; p > 0.05). However, among normal weight children and juvenile men, the LEPR rs1137100 A-allele significantly associated with lower BMI (β = −0.12, p = 0.0026). CONCLUSIONS: The IL6, LEPR, NAMPT, and AMD1 gene variants previously found to associate among Indian children did not associate with risk of obesity or obesity-related quantitative measures among Caucasian children and juvenile men from Denmark

    The type 2 diabetes risk allele of TMEM154-rs6813195 associates with decreased beta cell function in a study of 6,486 Danes

    Get PDF
    A trans-ethnic meta-analysis of type 2 diabetes genome-wide association studies has identified seven novel susceptibility variants in or near TMEM154, SSR1/RREB1, FAF1, POU5F1/TCF19, LPP, ARL15 and ABCB9/MPHOSPH9. The aim of our study was to investigate associations between these novel risk variants and type 2 diabetes and pre-diabetic traits in a Danish population-based study with measurements of plasma glucose and serum insulin after an oral glucose tolerance test in order to elaborate on the physiological impact of the variants.Case-control analyses were performed in up to 5,777 patients with type 2 diabetes and 7,956 individuals with normal fasting glucose levels. Quantitative trait analyses were performed in up to 5,744 Inter99 participants naïve to glucose-lowering medication. Significant associations between TMEM154-rs6813195 and the beta cell measures insulinogenic index and disposition index and between FAF1-rs17106184 and 2-hour serum insulin levels were selected for further investigation in additional Danish studies and results were combined in meta-analyses including up to 6,486 Danes.We confirmed associations with type 2 diabetes for five of the seven SNPs (TMEM154-rs6813195, FAF1-rs17106184, POU5F1/TCF19-rs3130501, ARL15-rs702634 and ABCB9/MPHOSPH9-rs4275659). The type 2 diabetes risk C-allele of TMEM154-rs6813195 associated with decreased disposition index (n=5,181, β=-0.042, p=0.012) and insulinogenic index (n=5,181, β=-0.032, p=0.043) in Inter99 and these associations remained significant in meta-analyses including four additional Danish studies (disposition index n=6,486, β=-0.042, p=0.0044; and insulinogenic index n=6,486, β=-0.037, p=0.0094). The type 2 diabetes risk G-allele of FAF1-rs17106184 associated with increased levels of 2-hour serum insulin (n=5,547, β=0.055, p=0.017) in Inter99 and also when combining effects with three additional Danish studies (n=6,260, β=0.062, p=0.0040).Studies of type 2 diabetes intermediary traits suggest the diabetogenic impact of the C-allele of TMEM154-rs6813195 is mediated through reduced beta cell function. The impact of the diabetes risk G-allele of FAF1-rs17106184 on increased 2-hour insulin levels is however unexplained

    The Low-Expression Variant of FABP4 Is Associated With Cardiovascular Disease in Type 1 Diabetes

    Get PDF
    Fatty acid binding protein 4 (FABP4) is implicated in the pathogenesis of cardiometabolic disorders. Pharmacological inhibition or genetic deletion of FABP4 improves cardiometabolic health and protects against atherosclerosis in preclinical models. As cardiovascular disease (CVD) is common in type 1 diabetes, we examined the role of FABP4 in the development of complications in type 1 diabetes, focusing on a functional, low-expression variant (rs77878271) in the promoter of the FABP4 gene. For this, we assessed the risk of CVD, stroke, coronary artery disease (CAD), end-stage kidney disease, and mortality using Cox proportional hazards models for the FABP4 rs77878271 in 5,077 Finnish individuals with type 1 diabetes. The low-expression G allele of rs77878271 increased the risk of CVD, independent of confounders. Findings were tested for replication in 852 Danish and 3,678 Finnish individuals with type 1 diabetes. In the meta-analysis, each G allele increased the risk of stroke by 26% (P = 0.04), CAD by 26% (P = 0.006), and CVD by 17% (P = 0.003). In Mendelian randomization, a 1-SD unit decrease in FABP4 increased risk of CAD 2.4-fold. Hence, in contrast with the general population, among patients with type 1 diabetes the low-expression G allele of rs77878271 increased CVD risk, suggesting that genetically low FABP4 levels may be detrimental in the context of type 1 diabetes.Peer reviewe

    Genome-wide association study on coronary artery disease in type 1 diabetes suggests beta-defensin 127 as a risk locus

    Get PDF
    Aims Diabetes is a known risk factor for coronary artery disease (CAD). There is accumulating evidence that CAD pathogenesis differs for individuals with type 1 diabetes (T1D). However, the genetic background has not been extensively studied. We aimed to discover genetic loci increasing CAD susceptibility, especially in T1D, to examine the function of these discoveries and to study the role of the known risk loci in T1D. Methods and results We performed the largest genome-wide association study to date for CAD in T1D, comprising 4869 individuals with T1D (cases/controls: 941/3928). Two loci reached genome-wide significance, rs1970112 in CDKN2B-AS1 [odds ratio (OR) =1.32, P = 1.50 x 10(-8)], and rs6055069 on DEFB127 promoter (OR= 4.17, P= 2.35 x 10(-9)), with consistent results in survival analysis. The CDKN2B-AS1 variant replicated (P = 0.04) when adjusted for diabetic kidney disease in three additional T1D cohorts (cases/controls: 434/3123). Furthermore, we explored the function of the lead discoveries with a cardio-phenome-wide analysis. Among the eight suggestive loci (P <1 x 10(-6)), rs70962766 near B3GNT2 associated with central blood pressure, rs1344228 near CNTNAP5 with intima media thickness, and rs2112481 on GRAMD2B promoter with serum leucocyte concentration. Finally, we calculated genetic risk scores for individuals with T1D with the known susceptibility loci. General population risk variants were modestly but significantly associated with CAD also in T1D (P=4.21 x 10(-7)). Conclusion While general population CAD risk loci had limited effect on the risk in T1D, for the first time, variants at the CDKN2B-AS1 locus were robustly associated with CAD in individuals with T1D. The novel finding on beta-defensin DEFB127 promoter provides a link between diabetes, infection susceptibility, and CAD, although pending on future confirmation. [GRAPHICS] .Peer reviewe
    • …
    corecore